
The Real Web3: A simple proof-of-concept

February 28th, 2024
John Rigler (john@rigler.org)

Summary:

We seem to have largely agreed on what Web3 is supposed to be, yet today are experiencing something
closer to Web2.8. This vanillaJS arbitrary data pinner shows both what “The Real Web3” might
require and also provide to various use cases. The most obvious use case would be to create a
censorship-proof message board where each user is known by their confirmed self-sovereign identity.

 This product includes a small smart contract which have been implemented on the Polygon network. It
also contains what appears to be a novel unspendable address hack to create a “Web3 Table of
Contents” and native (fully on-chain) word search.

Part One: A no-nonsense tech stack

My version of Web3 is build with the following rules in mind. You follow along
and see the working prototype at: https://rigler.org/web3 ← immediate redirect to
IPFS.

Rule One: No DNS or traditional web server (boot from Web3)

A truly distributed solution should be detached from any single choke point. For
this reason, we boot from either IPFS or Arweave.

Rule Two: No nodejs

We all love Nodejs, but for the purpose of this demo, we must reduce our server
footprint to almost nothing. Lightweight Javascript is easy to audit. Since we are
using content-based addressing, we can now audit and understand not only how
code operated, but also that it won’t change. Node frameworks can be transpiled,
minified, and included in an IPFS or Arweave boot-up system, but this original
project was conceived without it.

Rule Three: Always store helpful public data on-chain

This is a big one. This demo aims to be simple and powerful. If you have enough
crypto to pay gas fees, you should be completely in control of your actions. By
writing everything to the ledger, this becomes obvious. You can also share your
“boot up” Web3 index page with other people since you each could burn different
sets of data into the ledger. Of course some temporary data solutions exist, but are
a distraction from the very direct message of this paper.

mailto:john@rigler.org
https://rigler.org/web3

Rule Four: The Real Web3 is hacked out of an amoral and uncontrollable
public blockchain ledger

We can endlessly debate the relative merits or problems with etching data (ordinal
inscription style) directly into a permanent record, yet we can only apply a sense of
morality and “good practice” to our own actions. Because miners and validators do
not scan content, no product offering ends up acting as a middleman. This mean no
censor. Without censorship, we can not enforce morality on other and thus we must
come to the conclusion that Web3 is beyond our control. Once the places where
it touches Web2 are removed, it takes on new, unexpected, powers. This doesn’t
mean that computer programmers shouldn’t act with a strong sense of morality, but
just that the rules of this new universe are not what they might have previously
imagined.

Part Two: The actual demo

The demonstration starts in pretty familiar territory. You can experience it by
visiting https://rigler.org/web3 This page is one of a thousand that could lead to
the same place. Anyone with IPFS knowledge could pin it into their library. If they
first correct the intentional typos, the its content-based address would change. This
code is fully functional and can create and read smart contract transactions.

Included is a simple table of contents (click Home to see):

https://rigler.org/web3

The

“old_pinner.html” link is the actual demo, included in a larger set of tools.

The tool simply allows you to upload arbitrary data into the input field of a smart
contract. It then relies on a block explorer to render each transaction and decode
any data.

(Click on old_pinner.html and you will see this.)

Below we see the “Add URL” option. This will simply create a hyperlink.

Another option is allows for a similar hyperlink with an image instead of text. But
since the real purpose of the application is to demonstrate what a pure Web3
implementation might look like, we simply provide you with a “free form” option:

When you enter your choice and click “Next”, you are shown how your final
product will look. Does the above look “good enough for forever”? Sure it does!
Hit “send” to pop opened Metamask. Note that you can see the hex code of your
transaction.

Once Metamask processes your entry, it will be on the blockchain (Polygon), and
will show up at the top of the search.

Quick Review: Web3 is a big deal

So let’s review what we know:

• With a Self-sovereign Ethereum Address ID, you are in complete control.
• No real Web2 homepage is need. This all lives in a new kind of distributed solution.
• Enter whatever arbitrary data that you want. No one will stop you.

And now lets add one more twist. A 100% Web3-native database is hacked into the
transaction stack. Let’s look at the “Index Search” button:

One of the “search terms” is “Eth Denver”. We have been adding these all week!
Here is the results page:

And here is a snippet from the polygonscan reference for one of the transactions:

Notice the target address of the two internal transactions. These are not spendable
addresses. You can tell because of all the zeroes. But these also aren’t hashes. They

are simply a straight hex conversion of the search strings:

 E t h D e n v e r
0x4574682044656e76657200000000000000000000

Did you see the hack here? Let’s look a bit closer. It is just a simple ascii to hex
conversion.

E t h (space) D e n v e

45 74 68 20 44 65 6e 76 65

This allows you to retool these “fake” or “unspendable” addresses as search
indexes. Just search the API for internal transactions that match the word. Site such
as Etherscan or Polygonscan will always index these as part of their basic offering
as a block explorer. This is huge. Tokens are usually restricted to their own
closed garden, smart contracts usually are too, but with this address hack, you can
search the whole ledger for someone else sending the same signal.

So now you not only have a way into the system where you know:
• no one is spying on you
• the “website” can’t easily be blocked since it is in IPFS or Arweave
• you can “say” whatever you want with only Metamask
• core-level indexing is hacked right into the transaction for easy searchability

Oh yea, these are also like small Ordinal Inscriptions

In this version, we use a small bit of PHP to decode the on-chain image. Soon, a
completely on-chain image viewer will be included.

Let’s look at that transaction a bit closer:

Below we see the PNG tag. Above we view the middle of the hex blob:

If you want to take a look yourself, this is polygon tx:

txid:
0xbf38024190bbca9ae2a73c85019042b1c9aa993cb75a09e408741dd5185229cb
block height:
46866724
position in block:
33

https://polygonscan.com/tx/0xbf38024190bbca9ae2a73c85019042b1c9aa993cb75
a09e408741dd5185229cb

The Origins (and future) of all this…

I consider this system to be series of clever little hacks of the data capabilities of
EVM. But even before this, other hacks were possible. Here is an example with a

dogecoin like currency called Digibyte:

https://digibyteblockexplorer.com/address/
DBxYoUTUBEvCoMzzzzzzzzzzzzzzZ31xMU

In this version. Addresses can be hacked into the ledger with my “unspendable”
function. This works for various Gen. 1 currencies.

The full meanings of DAxCAKEzzz or DCxTHExDiSTANCEzzz is beyond the
scope of this paper, but their logic and placement was an earlier non-EVM search
hack. These were built with:

https://github.com/johnrigler/unspendable

https://github.com/johnrigler/unspendable
https://digibyteblockexplorer.com/address/DBxYoUTUBEvCoMzzzzzzzzzzzzzzZ31xMU
https://digibyteblockexplorer.com/address/DBxYoUTUBEvCoMzzzzzzzzzzzzzzZ31xMU

Also, in the BSV chain, the data (Gen. One/OP_RETURN) field has no limit. I
was able to etch a picture into that ledger and actually use the block explorer to
read it back (see on next page). Inscriptions pre-date BTC-ordinals.

https://whatsonchain.com/address/1FgJok3sLLbP4hmiCtURKLkARKt49W98JA

The “Decode” button above reads the special “bitcom -B” format and renders as an
image:

https://whatsonchain.com/address/1FgJok3sLLbP4hmiCtURKLkARKt49W98JA

So some of these ideas are novel, but just under the surface, Web3 had been in the
works for a long time. The difference between the image above and the happy face
drawn in Polygon is that this BSV image involved me running and using a huge
core server , and the polygon version was done only with metamask and the new
Web3 tool.

Conclusion

This tool was designed to be simple, small, and hopefully readable. My main goal
was to prove to myself that a RealWeb3 application could be created under a strict
set of requirements. The ideas expressed in this paper are general in nature and
should not be patented. I do truly believe that this is “more Web3” than some
server-based tool. This difference is more than just academic. The Media Scholar
Marshall McLuhan is famous for saying “The medium is the message”. I believe
that the lack of gatekeeper granted by applications such as this are the foundation
of a new medium-- which I call Web3.

